What concepts or facts do you know from math that is mind blowing, awesome, or simply fascinating?
Here are some I would like to share:
- Gödel’s incompleteness theorems: There are some problems in math so difficult that it can never be solved no matter how much time you put into it.
- Halting problem: It is impossible to write a program that can figure out whether or not any input program loops forever or finishes running. (Undecidablity)
The Busy Beaver function
Now this is the mind blowing one. What is the largest non-infinite number you know? Graham’s Number? TREE(3)? TREE(TREE(3))? This one will beat it easily.
- The Busy Beaver function produces the fastest growing number that is theoretically possible. These numbers are so large we don’t even know if you can compute the function to get the value even with an infinitely powerful PC.
- In fact, just the mere act of being able to compute the value would mean solving the hardest problems in mathematics.
- Σ(1) = 1
- Σ(4) = 13
- Σ(6) > 101010101010101010101010101010 (10s are stacked on each other)
- Σ(17) > Graham’s Number
- Σ(27) If you can compute this function the Goldbach conjecture is false.
- Σ(744) If you can compute this function the Riemann hypothesis is false.
Sources:
- YouTube - The Busy Beaver function by Mutual Information
- YouTube - Gödel’s incompleteness Theorem by Veritasium
- YouTube - Halting Problem by Computerphile
- YouTube - Graham’s Number by Numberphile
- YouTube - TREE(3) by Numberphile
- Wikipedia - Gödel’s incompleteness theorems
- Wikipedia - Halting Problem
- Wikipedia - Busy Beaver
- Wikipedia - Riemann hypothesis
- Wikipedia - Goldbach’s conjecture
- Wikipedia - Millennium Prize Problems - $1,000,000 Reward for a solution
Collatz conjecture or sometimes known as the 3x+1 problem.
The question is basically: Does the Collatz sequence eventually reach 1 for all positive integer initial values?
Here’s a Veritasium Video about it: https://youtu.be/094y1Z2wpJg
Basically:
You choose any positive integer, then apply 3x+1 to the number if it’s odd, and divide by 2 if it’s even. The Collatz conjecture says all positive integers eventually becomes a 4 --> 2 --> 1 loop.
So far, no person or machine has found a positive integer that doesn’t eventually results in the 4 --> 2 --> 1 loop. But we may never be able to prove the conjecture, since there could be a very large number that has a collatz sequence that doesn’t end in the 4-2-1 loop.
maybe this will make more sense when I watch the veritasium video, but I don’t have time to do that until the weekend. How is 3x+1 unprovable? won’t all odd numbers multiplied by 3 still be odd? and won’t adding 1 to an odd number always make it even? and aren’t all even numbers by definition divisible by 2? I’m struggling to see how there could be any uncertainty in this
The number 26 reaches as high as 40 before falling back to 4-2-1 loop. The very next number, 27, goes up to 9232 before it stops going higher. For numbers 1 to 10,000 most of them reach a peak of less than 100,000, but somehow, the number 9663 goes up to 27,114,424 before trending downwards. The uncertainty is that what if there is a special number that doesn’t just stop at a peak, but goes on forever. I’m not really good at explaining things, so you’re gonna have to watch the video.
Just after going through a few examples in my head, the difficulty becomes somewhat more apparent. let’s start with 3. This is odd, so 3(3)+1 = 10. 10 is even so we have 10/2=5.
By this point my intuition tells me that we don’t have a very obvious pattern that we can use to decide whether the function will output 4, 2, or 1 by recursively applying the function to its own output, other than the fact that every other number that we try appears to result in this pattern. We could possibly reduce the problem to whether we can guess that the function will eventually output a power of 2, but that doesn’t sound to me like it makes things much easier.
If I had no idea whether a proof existed, I would guess that it may, but that it is non-trivial. Or at least my college math courses did not prepare me to find one. Since it looks like plenty of professional mathematicians have struggled with it, I have no doubt that if a proof exists it is non-trivial.
The unproven part is that it eventually will reach 1, not that it’s not possible to do the computation. Someone may find a number loop that doesn’t eventually reach 1.