It just seems like it would be a really cool thing to have gills and be able to populate the oceans in the same way we populate the land. We could have houses and shops and vehicles, andgo on walks/swims and just kind of live underwater.
Start a whole new second species of human here on earth maybe, Who knows?
Yes
Not quite. The hox gene creates a protein that tells the nearby cells that they are in a specific segment. After this specific cells in that segment start signalling so they cooperatively lay out the cardinal directions to make that specific segment. In the shoulder segment, for example, a specific cell becomes the tip of the arm and tells all the cells about it with its signalling protein. All the cells in between it and the root now ‘know’ which part of the arm to grow.
This is a cascade of ever finer positioned ‘location markers’ that guide generic cells to specialise correctly.
Ultimately, as two bones grow into each other, they know to form a joint, and as that joint takes form the joint surfaces fit each other exactly.
Assuming we want to keep our neck, jaw and ear features, we need to keep our existing hox gene and all the genes that turn on in this cascade to produce these structure. If we alter them, our development will change.
The issue is that in a fish or shark, exactly the same location marker is used to lay down their gills. So adding a shark hox gene will result in a human segment at that location. Hox is a marker - not the full set of instructions to build the segment.
We therefore need
Well, we can’t reuse the existing one because it creates human structure. So we need brand new genes for 2 and 3.
I’m not a professional in this area, but I haven’t seen anything that suggests we can fo this yet.
I think part 4 (the bit about creating new tissues) might in fact be the easier part. But to cause them to be developed at the right time in the right place and at the correct size with brand new signals is waaaay out there.
Speaking as someone whose last practical biology wiped out all the very expensive cell colonies, and that was 30 years ago, I hope my wild suggestions here are even vaguely in the right direction.